perm filename BSLOOK.TMP[TEX,DEK] blob sn#398201 filedate 1978-11-29 generic text, type T, neo UTF8
*\input bamhdr
 (bamhdr.TEX 1 2 3 4 5 6)
*\trace'377
*\input brezis
 (brezis.TEX 1 2



\beginpaxxx →\gdef \tpage {T}\gdef \rauth {}\gdef \rtitle {}\gdef \theauthxxxx {} \gdef \iscommbx {F}\gdef \thedatexxxx {date unknown}\gdef \iskeywoxxx {F} \gdef \theabstxxxx {}\eightpoxxx 
\eightpoxxx →\baselinxxxxx 10pt \dispskix 10pt plus 3pt minus 7pt \dispaskxx 0pt plus 3pt \dispbskxx 5pt plus 3pt minus 2pt \def \rm {\␈: c} \def \sl {\␈: i} \def \bf {\␈: s} \def \it {\␈: i} \def \nm {\␈: c} \def \biglp {\mathopex {\hjust {\␈: b(}}} \def \bigrp {\mathcloxx {\hjust {\␈: b)}}} \def \bigv {\hjust {\␈: v\char '152}} \def \strut {\lower 3pt\vjust to 10pt{}} \def \␈9 {\hskip 4pt} \mathrm cee \mathit ikk \mathsy wyy \rm 
\rm →\␈: c


\title #1\par →\save 1\ctrline {\␈: q\uppercaxx {#1\unskip }}


#1←Nonlinear Ergodic Theorems \shorttixxx Nonlinear ergodic theorems 
\ctrline #1→\hjust to size{\hskip 0pt plus1000cm minus1000cm #1\hskip 0pt plus1000cm minus1000cm}
#1←\␈: q\uppercaxx {Nonlinear Ergodic Theorems \shorttixxx Nonlinear ergodic theorems \unskip }
\shorttixxx #1\par →\gdef \rtitle {\␈: c\uppercaxx {#1\unskip }}


#1←NONLINEAR ERGODIC THEOREMS \unskip }\hskip 0pt plus1000cm minus1000cm}\author H. Br\␈' ezis and F. E. Browder 
\author #1\par →\save 2\ctrline {\␈: c\uppercaxx {by #1\unskip }}\gdef \rauth {\␈: c\uppercaxx {#1\unskip }}


#1←H. Br\␈' ezis and F. E. Browder \unskip }}\shortauxxxx Br\␈' ezis and Browder 
\ctrline #1→\hjust to size{\hskip 0pt plus1000cm minus1000cm #1\hskip 0pt plus1000cm minus1000cm}
#1←\␈: c\uppercaxx {by H. Br\␈' ezis and F. E. Browder \unskip }
\shortauxxxx #1\par →



#1←Br\␈' ezis and Browder \unskip }}\gdef \rauth {\␈: c\uppercaxx {H. Br\␈' ezis and F. E. Browder \unskip }}\shortauxxxx Br\␈' ezis and Browder \unskip }}\authaddx Department of Mathematics, University of Chicago, Chicago, Illinois 60637 

\commby #1\par →\gdef \iscommbx {T}\gdef \thecommxx {#1\unskip }

#1←Alexandra Bellow 

\daterecx #1\par →\gdef \thedatexxxx {#1\unskip }

#1←May 17, 1976 

\keywordx #1\par →\gdef \iskeywoxxx {T} \botinsexx {\hrule width 5pc \vskip 3pt \hjust to size{\␈: cKeywords: #1\unskip .\hfill }}

#1←ergodic theory, nonlinear mappings, averaging processes 
! You can't do that in restricted horizontal mode.
...gdef \iskeywoxxx {T} \botinsexx 
{\hrule width 5pc \vskip 3pt \hj...
p.2,l.20  

↑i
*\ddt
⊗⊗⊗ restricted horizontal, spacefactor 1.0000
\glue .0000 plus 28452.7560 minus 28452.7560
\:Q N
\:Q O
\:Q N
\:Q L
etc.
⊗⊗⊗ vertical
⊗⊗⊗ current page:
⊗⊗⊗ nesting level 2
! OK.
(*) \ddt

...gdef \iskeywoxxx {T} \botinsexx 
{\hrule width 5pc \vskip 3pt \hj...
p.2,l.20  

↑i
*}\botinsert
! You can't do that in restricted horizontal mode.
(*) }\botinsert

(*) \ddt

...gdef \iskeywoxxx {T} \botinsexx 
{\hrule width 5pc \vskip 3pt \hj...
p.2,l.20  

↑i
*}}}
! Too many }'s.
(*) }}
}
(*) }\botinsert

(*) \ddt

...gdef \iskeywoxxx {T} \botinsexx 
{\hrule width 5pc \vskip 3pt \hj...
p.2,l.20  

↑i
*
! Too many }'s.
(*) }}}

(*) }\botinsert

(*) \ddt

...gdef \iskeywoxxx {T} \botinsexx 
{\hrule width 5pc \vskip 3pt \hj...
p.2,l.20  

↑i
*\botinsert

\Amsclasx #1\par →\botinsexx {\if T\iskeywoxxx {}\else {\hrule width 5pc\vskip 3pt} \hjust to size{\␈: iAMS (MOS) subject classifications (1970). \␈: c#1\unskip .\hfill }}

#1←Primary 47A35, 47H10; Secondary 40G05 
\iskeywoxxx →T

\abstracx #1\par →\gdef \theabstxxxx {#1}





#1←In two recent notes (\ref 1, \ref 2), {\nm J-B. Baillon} proved the first ergodic theorems for nonlinear mappings in Hilbert space. We simplify the argument here and obtain an extension of {\nm Baillon}'s theorems from the usual Ces\␈` aro means of ergodic theory to general averaging processes $A↓n= \sum ↓{k=0}↑\infty a↓{n,k}T↑k$ ($0≤a↓{n,k}$,\xskip $\sum ↓{k≥0}a↓{n,k}=1$). 

\begintexx →\null \vskip 24pt plus 12pt minus 12pt \box 1 \vskip 4pt plus 3pt minus 1pt \box 2 \vskip 4pt plus 3pt minus 1pt \ctrline {\if T\iscommbx {Communicated by \thecommxx ,}\else {Received}\␈
 \thedatexxxx } \vskip 8pt plus 6pt minus 3pt \tenpoinx \theabstxxxx \par 
\null →\hjust {}
\ctrline #1→\hjust to size{\hskip 0pt plus1000cm minus1000cm #1\hskip 0pt plus1000cm minus1000cm}
#1←\if T\iscommbx {Communicated by \thecommxx ,}\else {Received}\␈
 \thedatexxxx 
\iscommbx →T
\thecommxx →Alexandra Bellow \unskip 
\thedatexxxx →May 17, 1976 \unskip 
\tenpoinx →\baselinxxxxx 12pt \dispskix 12pt plus 3pt minus 9pt \dispaskxx 0pt plus 3pt \dispbskxx 7pt plus 3pt minus 4pt \def \rm {\␈: b} \def \sl {\␈: h} \def \bf {\␈: q} \def \it {\␈: h} \def \nm {\␈: b} \def \biglp {\mathopex {\vcenter {\hjust {\␈: @\char '0}}}} \def \bigrp {\mathcloxx {\vcenter {\hjust {\␈: @\char '1}}}} \def \bigv {\hskip 1.111pt\left |\vjust to 7pt{}\right .} \def \strut {\lower 3.5pt\vjust to 12pt{}} \def \␈9 {\hskip 5pt} \mathrm bce \mathit hik \mathsy vwy \rm 
\rm →\␈: b
\theabstxxxx →In two recent notes (\ref 1, \ref 2), {\nm J-B. Baillon} proved the first ergodic theorems for nonlinear mappings in Hilbert space. We simplify the argument here and obtain an extension of {\nm Baillon}'s theorems from the usual Ces\␈` aro means of ergodic theory to general averaging processes $A↓n= \sum ↓{k=0}↑\infty a↓{n,k}T↑k$ ($0≤a↓{n,k}$,\xskip $\sum ↓{k≥0}a↓{n,k}=1$). 
\ref #1→[{\bf #1}]
#1←1
\bf →\␈: q
\ref #1→[{\bf #1}]
#1←2
\bf →\␈: q
\nm →\␈: b
\nm →\␈: b
\xskip →\hskip 7pt plus 3pt minus 4pt

⊗⊗⊗ vertical, prevdepth 5.7778
⊗⊗⊗ current page:
\botinsert (can wait) 14.1778 plus 6.0000
.\glue 3.0000 plus 6.0000
.\rule( .4000 + .0000)x 60.0000
.\glue 3.0000
.\hbox( 5.5556 + 2.2222)x 360.0000, glueset .0000
..\:C K
..\:C e
..\:C y
..\:C w
..\:C o
..etc.
\botinsert (can wait) 14.1111 plus 6.0000
.\glue 3.0000 plus 6.0000
.\hbox( 6.1111 + 5.0000)x 360.0000, glueset .0000
..\:I A
..\:I M
..\:I S
..\glue 2.5000 plus 1.2500 minus 1.2500
..\:I (
..etc.
\hbox( .0000 + .0000)x .0000
\glue 24.0000 plus 12.0000 minus 12.0000
\glue 3.0556
etc.
⊗⊗⊗ nesting level 0
! OK.
p.2,l.30 \ddt
\thbegin Theorem 1. Let $H$ be a Hilbert space,\xskip $C$ a closed bounded convex
↑i
*\trace'777001777\ddt
\trace →\chpar 0←
⊗⊗⊗ vertical, prevdepth 5.7778
⊗⊗⊗ current page:
\botinsert (can wait) 14.1778 plus 6.0000
.\glue 3.0000 plus 6.0000
.etc.
etc.
⊗⊗⊗ nesting level 0
! OK.
(*) \trace'777001777\ddt

p.2,l.30 \ddt
\thbegin Theorem 1. Let $H$ be a Hilbert space,\xskip $C$ a closed bounded convex
↑i
*\trace'1777777\ddt
\trace →\chpar 0←
⊗⊗⊗ vertical, prevdepth 5.7778
⊗⊗⊗ current page:
\botinsert (can wait) 14.1778 plus 6.0000
.\glue 3.0000 plus 6.0000
.\rule( .4000 + .0000)x 60.0000
.\glue 3.0000
.\hbox( 5.5556 + 2.2222)x 360.0000, glueset .0000
..\:C K
..\:C e
..\:C y
..\:C w
..\:C o
..\:C r
..\:C d
..\:C s
..\:C :
..\glue 2.7778 plus 2.7778 minus .6944
..\:C e
..\:C r
..\:C g
..\:C o
..\:C d
..\:C i
..\:C c
..\glue 2.7778 plus 1.3889 minus 1.3889
..\:C t
..\:C h
..\:C e
..\:C o
..\:C r
..\:C y
..\:C ,
..\glue 2.7778 plus 1.7361 minus 1.1111
..\:C n
..\:C o
..\:C n
..\:C l
..\:C i
..\:C n
..\:C e
..\:C a
..\:C r
..\glue 2.7778 plus 1.3889 minus 1.3889
..\:C m
..\:C a
..\:C p
..\:C p
..\:C i
..\:C n
..\:C g
..\:C s
..\:C ,
..\glue 2.7778 plus 1.7361 minus 1.1111
..\:C a
..\:C v
..\:C e
..\:C r
..\:C a
..\:C g
..\:C i
..\:C n
..\:C g
..\glue 2.7778 plus 1.3889 minus 1.3889
..\:C p
..\:C r
..\:C o
..\:C c
..\:C e
..\:C s
..\:C s
..\:C e
..\:C s
..\:C .
..\glue .0000 plus 10000000000.0000
\botinsert (can wait) 14.1111 plus 6.0000
.\glue 3.0000 plus 6.0000
.\hbox( 6.1111 + 5.0000)x 360.0000, glueset .0000
..\:I A
..\:I M
..\:I S
..\glue 2.5000 plus 1.2500 minus 1.2500
..\:I (
..\:I M
..\:I O
..\:I S
..\:I )
..\glue 2.5000 plus 1.2500 minus 1.2500
..\:I s
..\:I u
..\:I b
..\:I j
..\:I e
..\:I c
..\:I t
..\glue 2.5000 plus 1.2500 minus 1.2500
..\:I c
..\:I l
..\:I a
..\:I s
..\:I s
..\:I i
..\:I \
..\:I c
..\:I a
..\:I t
..\:I i
..\:I o
..\:I n
..\:I s
..\glue 2.5000 plus 1.2500 minus 1.2500
..\:I (
..\:I 1
..\:I 9
..\:I 7
..\:I 0
..\:I )
..\:I .
..\glue 2.5000 plus 3.7500 minus .4167
..\:C P
..\:C r
..\:C i
..\:C m
..\:C a
..\:C r
..\:C y
..\glue 2.7778 plus 1.3889 minus 1.3889
..\:C 4
..\:C 7
..\:C A
..\:C 3
..\:C 5
..\:C ,
..\glue 2.7778 plus 1.7361 minus 1.1111
..\:C 4
..\:C 7
..\:C H
..\:C 1
..\:C 0
..\:C ;
..\glue 2.7778 plus 2.0833 minus .9259
..\:C S
..\:C e
..\:C c
..\:C o
..\:C n
..\:C d
..\:C a
..\:C r
..\:C y
..\glue 2.7778 plus 1.3889 minus 1.3889
..\:C 4
..\:C 0
..\:C G
..\:C 0
..\:C 5
..\:C .
..\glue .0000 plus 10000000000.0000
\hbox( .0000 + .0000)x .0000
\glue 24.0000 plus 12.0000 minus 12.0000
\glue 3.0556
\hbox( 6.9444 + .0000)x 360.0000, glueset .0064
.\glue .0000 plus 28452.7560 minus 28452.7560
.\:Q N
.\:Q O
.\:Q N
.\:Q L
.\:Q I
.\:Q N
.\:Q E
.\:Q A
.\:Q R
.\glue 3.3333 plus 1.6667 minus 1.6667
.\:Q E
.\:Q R
.\kern-.2778
.\:Q G
.\:Q O
.\:Q D
.\:Q I
.\:Q C
.\glue 3.3333 plus 1.6667 minus 1.6667
.\:Q T
.\:Q H
.\:Q E
.\:Q O
.\:Q R
.\:Q E
.\:Q M
.\:Q S
.\glue 3.3333 plus 1.6667 minus 1.6667
\glue 4.0000 plus 3.0000 minus 1.0000
\glue 1.6667
\hbox( 8.3333 + .0000)x 360.0000, glueset .0037
.\glue .0000 plus 28452.7560 minus 28452.7560
.\:C B
.\:C Y
.\glue 2.7778 plus 1.3889 minus 1.3889
.\:C H
.\:C .
.\glue 2.7778 plus 1.3889 minus 1.3889
.\:C B
.\:C R
.\vbox( 8.3333 + .0000)x 5.5556, glueset-.0000
..\hbox( 6.6667 + .0000)x 5.0000, shifted .2778
...\:C '16
..\glue .0000 plus 1000000.0000 minus 1000000.0000
..\:C E
.\:C Z
.\:C I
.\:C S
.\glue 2.7778 plus 1.3889 minus 1.3889
.\:C A
.\:C N
.\:C D
.\glue 2.7778 plus 1.3889 minus 1.3889
.\:C F
.\:C .
.\glue 2.7778 plus 1.3889 minus 1.3889
.\:C E
.\:C .
.\glue 2.7778 plus 1.3889 minus 1.3889
.\:C B
.\:C R
.\:C O
.\:C W
.\:C D
.\:C E
.\:C R
.\glue .0000 plus 28452.7560 minus 28452.7560
\glue 4.0000 plus 3.0000 minus 1.0000
\glue 3.8889
\hbox( 6.1111 + 2.2222)x 360.0000, glueset .0031
.\glue .0000 plus 28452.7560 minus 28452.7560
.\:C C
.\:C o
.\:C m
.\:C m
.\:C u
.\:C n
.\:C i
.\:C c
.\:C a
.\:C t
.\:C e
.\:C d
.\glue 2.7778 plus 1.3889 minus 1.3889
.\:C b
.\:C y
.\glue 2.7778 plus 1.3889 minus 1.3889
.\:C A
.\:C l
.\:C e
.\:C x
.\:C a
.\:C n
.\:C d
.\:C r
.\:C a
.\glue 2.7778 plus 1.3889 minus 1.3889
.\:C B
.\:C e
.\:C l
.\:C l
.\:C o
.\:C w
.\:C ,
.\glue 2.7778 plus 1.3889 minus 1.3889
.\:C M
.\:C a
.\:C y
.\glue 2.7778 plus 1.3889 minus 1.3889
.\:C 1
.\:C 7
.\:C ,
.\glue 2.7778 plus 1.7361 minus 1.1111
.\:C 1
.\:C 9
.\:C 7
.\:C 6
.\glue .0000 plus 28452.7560 minus 28452.7560
\glue 8.0000 plus 6.0000 minus 3.0000
\glue .0000 plus 1.0000
\glue 2.0000
\hbox( 7.7778 + 6.1111)x 360.0000, glueset-.6085
.\hbox( .0000 + .0000)x 25.0000
.\:B I
.\:B n
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B t
.\:B w
.\:B o
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B r
.\:B e
.\:B c
.\:B e
.\:B n
.\:B t
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B n
.\:B o
.\:B t
.\:B e
.\:B s
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B (
.\:B [
.\:Q 1
.\:B ]
.\:B ,
.\glue 3.6111 plus 2.0833 minus 1.3333
.\:B [
.\:Q 2
.\:B ]
.\:B )
.\:B ,
.\glue 3.6111 plus 2.0833 minus 1.3333
.\:B J
.\:B -
.\penalty0
.\:B B
.\:B .
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B B
.\:B a
.\:B i
.\:B l
.\:B l
.\:B o
.\:B n
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B p
.\:B r
.\:B o
.\:B v
.\:B e
.\:B d
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B t
.\:B h
.\:B e
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B '174
.\:B r
.\:B s
.\:B t
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B e
.\:B r
.\:B g
.\:B o
.\:B d
.\:B i
.\:B c
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B t
.\:B h
.\:B e
.\:B o
.\:B r
.\:B e
.\:B m
.\:B s
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B f
.\:B o
.\:B r
.\glue .0000
\penalty80
\glue 1.0000
\hbox( 7.2222 + 5.0000)x 360.0000, glueset .0385
.\:B n
.\:B o
.\:B n
.\:B l
.\:B i
.\:B n
.\:B e
.\:B a
.\:B r
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B m
.\:B a
.\:B p
.\:B p
.\:B i
.\:B n
.\:B g
.\:B s
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B i
.\:B n
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B H
.\:B i
.\:B l
.\:B b
.\:B e
.\:B r
.\:B t
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B s
.\:B p
.\:B a
.\:B c
.\:B e
.\:B .
.\glue 3.6111 plus 5.0000 minus .5556
.\:B W
.\:B e
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B s
.\:B i
.\:B m
.\:B p
.\:B l
.\:B i
.\:B f
.\:B y
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B t
.\:B h
.\:B e
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B a
.\:B r
.\:B g
.\:B u
.\:B m
.\:B e
.\:B n
.\:B t
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B h
.\:B e
.\:B r
.\:B e
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B a
.\:B n
.\:B d
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B o
.\:B b
.\discretionary\:B -
.\:B t
.\:B a
.\:B i
.\:B n
.\glue .0000
\glue 1.0000
\hbox( 8.3333 + 5.0000)x 360.0000, glueset-.2361
.\:B a
.\:B n
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B e
.\:B x
.\:B t
.\:B e
.\:B n
.\:B s
.\:B i
.\:B o
.\:B n
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B o
.\:B f
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B B
.\:B a
.\:B i
.\:B l
.\:B l
.\:B o
.\:B n
.\:B '
.\:B s
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B t
.\:B h
.\:B e
.\:B o
.\:B r
.\:B e
.\:B m
.\:B s
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B f
.\:B r
.\:B o
.\:B m
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B t
.\:B h
.\:B e
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B u
.\:B s
.\:B u
.\:B a
.\:B l
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B C
.\:B e
.\:B s
.\vbox( 8.3333 + 2.2222)x 5.0000, glueset-.0000
..\hbox( 8.3333 + .0000)x 6.1111, shifted-.5556
...\:B '15
..\glue .0000 plus 1000000.0000 minus 1000000.0000
..\:B a
.\:B r
.\:B o
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B m
.\:B e
.\:B a
.\:B n
.\:B s
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B o
.\:B f
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B e
.\:B r
.\discretionary\:B -
.\:B g
.\:B o
.\:B d
.\:B i
.\:B c
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B t
.\:B h
.\:B e
.\:B o
.\:B r
.\:B y
.\glue .0000
\penalty80
\glue 1.0000
\hbox( 9.4444 + 5.7778)x 360.0000, glueset .0000
.\:B t
.\:B o
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B g
.\:B e
.\:B n
.\:B e
.\:B r
.\:B a
.\:B l
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B a
.\:B v
.\:B e
.\:B r
.\:B a
.\:B g
.\:B i
.\:B n
.\:B g
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B p
.\:B r
.\:B o
.\:B c
.\:B e
.\:B s
.\:B s
.\:B e
.\:B s
.\glue 3.6111 plus 1.6667 minus 1.6667
.\hyphenation0
.\hbox( 7.2222 + 3.7222)x 11.6667
..\:H A
..\hbox( 3.8889 + 2.2222)x 4.7222, shifted 1.5000
...\:I n
.\glue 2.7778 plus 2.7778
.\:B =
.\penalty50
.\glue 2.7778 plus 2.7778
.\hbox( 8.0000 + 5.7778)x 23.6111
..\hbox( .0000 + 10.0000)x 10.5556, shifted-7.5000
...\:@ P
..\vbox( 11.0000 + 2.7778)x 13.0556, glueset .0000, shifted 3.0000
...\:W 1
...\glue .0000 plus 10000000000.0000
...\hbox( 5.5556 + 2.7778)x 13.0556
....\:I k
....\:C =
....\:C 0
.\glue 1.6667
.\hbox( 5.0000 + 4.7778)x 16.1111
..\:H a
..\hbox( 5.5556 + 2.7778)x 10.8333, shifted 2.0000
...\:I n
...\:C ,
...\:I k
.\hbox( 9.4444 + 3.3333)x 11.6667
..\:H T
..\hbox( 5.5556 + 2.7778)x 4.4444, shifted-3.8889
...\:I k
.\hyphenation1
.\glue 3.6111 plus 1.6667 minus 1.6667
.\:B (
.\hyphenation0
.\:B 0
.\glue 2.7778 plus 2.7778
.\:V '24
.\penalty50
.\glue 2.7778 plus 2.7778
.\hbox( 5.0000 + 4.7778)x 16.1111
..\:H a
..\hbox( 5.5556 + 2.7778)x 10.8333, shifted 2.0000
...\:I n
...\:C ,
...\:I k
.\hyphenation1
.\:B ,
.\glue 7.0000 plus 3.0000 minus 4.0000
.\hyphenation0
.\hbox( 7.5000 + 5.7778)x 23.0556
..\hbox( .0000 + 10.0000)x 10.5556, shifted-7.5000
...\:@ P
..\hbox( 5.5556 + 2.7778)x 12.5000, shifted 3.0000
...\:I k
...\:W '25
...\:C 0
.\glue 1.6667
.\hbox( 5.0000 + 4.7778)x 16.1111
..\:H a
..\hbox( 5.5556 + 2.7778)x 10.8333, shifted 2.0000
...\:I n
...\:C ,
...\:I k
.\glue 2.7778 plus 2.7778
.\:B =
.\penalty50
.\glue 2.7778 plus 2.7778
.\:B 1
.\hyphenation1
.\:B )
.\:B .
.\glue .0000 plus 10000000000.0000
⊗⊗⊗ nesting level 0
! OK.
(*) \trace'1777777\ddt

(*) \trace'777001777\ddt

p.2,l.30 \ddt
\thbegin Theorem 1. Let $H$ be a Hilbert space,\xskip $C$ a closed bounded convex
↑x
No output file.